Parity Systems and the Delta-Matroid Intersection Problem

نویسندگان

  • André Bouchet
  • Bill Jackson
چکیده

We consider the problem of determining when two delta-matroids on the same ground-set have a common base. Our approach is to adapt the theory of matchings in 2-polymatroids developed by Lovász to a new abstract system, which we call a parity system. Examples of parity systems may be obtained by combining either, two deltamatroids, or two orthogonal 2-polymatroids, on the same ground-sets. We show that many of the results of Lovász concerning ‘double flowers’ and ‘projections’ carry over to parity systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A constrained independent set problem for matroids

In this note, we study a constrained independent set problem for matroids and certain generalizations. The basic problem can be regarded as an ordered version of the matroid parity problem. By a reduction of this problem to matroid intersection, we prove a min-max formula. Studying the weighted case and a delta-matroid generalization, we prove that some of them are not more complex than matroid...

متن کامل

Solving the Linear Matroid Parity Problem as a Sequence of Matroid Intersection Problems

In this paper, we present an O(r n) algorithm for the linear matroid parity problem. Our solution technique is to introduce a modest generalization, the non-simple parity problem, and identify an important subclass of non-simple parity problems called 'easy' parity problems which can be solved as matroid intersection problems. We then show how to solve any linear matroid parity problem parametr...

متن کامل

A Fast, Simpler Algorithm for the Matroid Parity Problem

Consider a matrix with m rows and n pairs of columns. The linear matroid parity problem (LMPP) is to determine a maximum number of pairs of columns that are linearly independent. We show how to solve the linear matroid parity problem as a sequence of matroid intersection problems. The algorithm runs in O(mn). Our algorithm is comparable to the best running time for the LMPP, and is far simpler ...

متن کامل

Parallel Complexity for Matroid Intersection and Matroid Parity Problems

Let two linear matroids have the same rank in matroid intersection. A maximum linear matroid intersection (maximum linear matroid parity set) is called a basic matroid intersection (basic matroid parity set), if its size is the rank of the matroid. We present that enumerating all basic matroid intersections (basic matroid parity sets) is in NC, provided that there are polynomial bounded basic m...

متن کامل

The linear delta-matroid parity problem

This paper addresses a generalization of the matroid parity problem to delta-matroids. We give a minimax relation, as well as an efficient algorithm, for linearly represented deltamatroids. These are natural extensions of the minimax theorem of Lovász and the augmenting path algorithm of Gabow and Stallmann for the linear matroid parity problem. r 2003 Elsevier Science (USA). All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2000